Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A new alcohol-soluble electron-transporting molecule for efficient inverted polymer solar cells

Identifieur interne : 001208 ( Main/Repository ); précédent : 001207; suivant : 001209

A new alcohol-soluble electron-transporting molecule for efficient inverted polymer solar cells

Auteurs : RBID : Pascal:13-0254904

Descripteurs français

English descriptors

Abstract

A new electron-transporting material 4,7-diphenyl-1,10-phenanthroline-2,9-dicarboxylic acid (DPPA) was synthesized by modifying a n-type small molecule bathocuproine (BCP). The introduced carboxyl groups make DPPA soluble in polar solvent and compatible with large-scale solution-processing techniques. The anchoring of carboxyl on ZnO (or ITO) substrates helps to form a DPPA electron transporting layer, building an improved interfacial contact between the substrate and active layer. Furthermore, the highest occupied molecular orbital level of DPPA shifts to -6.45 eV, which is 0.38 eV deeper than that of BCP, suggesting enhanced hole-blocking. Inverted polymer solar cells using P3HT:PCBM blend as the active layer and DPPA modified ZnO as the electron transporting layer were fabricated. A power conversion efficiency (PCE) of 3.55% was obtained, which is about 10% higher than that of the conventional ZnO buffered devices (3.25%). The DPPA was also used to replace ZnO as the sole electron-extracting layer, resulting in an improved PCE of 3.46%, which indicates that DPPA-ETL/ITO forms a better cathode than conventional ZnO/ITO.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0254904

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">A new alcohol-soluble electron-transporting molecule for efficient inverted polymer solar cells</title>
<author>
<name>JING LI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park</s1>
<s2>Suzhou, Jiangsu 215123</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Suzhou, Jiangsu 215123</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Biotechnology, Chemistry, and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 57</s1>
<s2>9000 Aalborg</s2>
<s3>DNK</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Danemark</country>
<wicri:noRegion>9000 Aalborg</wicri:noRegion>
</affiliation>
</author>
<author>
<name>XIAODONG HUANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park</s1>
<s2>Suzhou, Jiangsu 215123</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Suzhou, Jiangsu 215123</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Biotechnology, Chemistry, and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 57</s1>
<s2>9000 Aalborg</s2>
<s3>DNK</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Danemark</country>
<wicri:noRegion>9000 Aalborg</wicri:noRegion>
</affiliation>
</author>
<author>
<name>JIANYU YUAN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park</s1>
<s2>Suzhou, Jiangsu 215123</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Suzhou, Jiangsu 215123</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Biotechnology, Chemistry, and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 57</s1>
<s2>9000 Aalborg</s2>
<s3>DNK</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Danemark</country>
<wicri:noRegion>9000 Aalborg</wicri:noRegion>
</affiliation>
</author>
<author>
<name>KUNYUAN LU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park</s1>
<s2>Suzhou, Jiangsu 215123</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Suzhou, Jiangsu 215123</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Biotechnology, Chemistry, and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 57</s1>
<s2>9000 Aalborg</s2>
<s3>DNK</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Danemark</country>
<wicri:noRegion>9000 Aalborg</wicri:noRegion>
</affiliation>
</author>
<author>
<name>WEI YUE</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Biotechnology, Chemistry, and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 57</s1>
<s2>9000 Aalborg</s2>
<s3>DNK</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Danemark</country>
<wicri:noRegion>9000 Aalborg</wicri:noRegion>
</affiliation>
</author>
<author>
<name>WANLI MA</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park</s1>
<s2>Suzhou, Jiangsu 215123</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Suzhou, Jiangsu 215123</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0254904</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0254904 INIST</idno>
<idno type="RBID">Pascal:13-0254904</idno>
<idno type="wicri:Area/Main/Corpus">000969</idno>
<idno type="wicri:Area/Main/Repository">001208</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1566-1199</idno>
<title level="j" type="abbreviated">Org. electron. : (Print)</title>
<title level="j" type="main">Organic electronics : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Active layer</term>
<term>Bathocuproine</term>
<term>Buffer system</term>
<term>Butyric acid</term>
<term>Cathode</term>
<term>Conversion rate</term>
<term>Dicarboxylic acid</term>
<term>Doped materials</term>
<term>Electron transport layer</term>
<term>Energy conversion</term>
<term>Ester</term>
<term>Fullerene compounds</term>
<term>Growth from solution</term>
<term>Indium oxide</term>
<term>Large scale</term>
<term>MO method</term>
<term>Manufacturing process</term>
<term>Molecular orbital</term>
<term>New product</term>
<term>Organic solar cells</term>
<term>Phenanthrolines</term>
<term>Self-assembled layer</term>
<term>Small molecule</term>
<term>Thiophene derivative polymer</term>
<term>Tin addition</term>
<term>Zinc oxide</term>
<term>n type semiconductor</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Cellule solaire organique</term>
<term>Produit nouveau</term>
<term>Diacide carboxylique</term>
<term>Echelle grande</term>
<term>Méthode en solution</term>
<term>Procédé fabrication</term>
<term>Addition étain</term>
<term>Couche active</term>
<term>Orbitale moléculaire</term>
<term>Méthode MO</term>
<term>Conversion énergie</term>
<term>Taux conversion</term>
<term>Système tampon</term>
<term>Cathode</term>
<term>Phénanthroline</term>
<term>Semiconducteur type n</term>
<term>Molécule petite</term>
<term>Oxyde de zinc</term>
<term>Oxyde d'indium</term>
<term>Thiophène dérivé polymère</term>
<term>Acide butyrique</term>
<term>Ester</term>
<term>Composé du fullerène</term>
<term>Couche autoassemblée</term>
<term>Matériau dopé</term>
<term>8105T</term>
<term>8116D</term>
<term>ZnO</term>
<term>ITO</term>
<term>Bathocuproïne</term>
<term>Couche de transport d'électrons</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Produit nouveau</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A new electron-transporting material 4,7-diphenyl-1,10-phenanthroline-2,9-dicarboxylic acid (DPPA) was synthesized by modifying a n-type small molecule bathocuproine (BCP). The introduced carboxyl groups make DPPA soluble in polar solvent and compatible with large-scale solution-processing techniques. The anchoring of carboxyl on ZnO (or ITO) substrates helps to form a DPPA electron transporting layer, building an improved interfacial contact between the substrate and active layer. Furthermore, the highest occupied molecular orbital level of DPPA shifts to -6.45 eV, which is 0.38 eV deeper than that of BCP, suggesting enhanced hole-blocking. Inverted polymer solar cells using P3HT:PCBM blend as the active layer and DPPA modified ZnO as the electron transporting layer were fabricated. A power conversion efficiency (PCE) of 3.55% was obtained, which is about 10% higher than that of the conventional ZnO buffered devices (3.25%). The DPPA was also used to replace ZnO as the sole electron-extracting layer, resulting in an improved PCE of 3.46%, which indicates that DPPA-ETL/ITO forms a better cathode than conventional ZnO/ITO.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1566-1199</s0>
</fA01>
<fA03 i2="1">
<s0>Org. electron. : (Print)</s0>
</fA03>
<fA05>
<s2>14</s2>
</fA05>
<fA06>
<s2>9</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>A new alcohol-soluble electron-transporting molecule for efficient inverted polymer solar cells</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>JING LI</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>XIAODONG HUANG</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>JIANYU YUAN</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>KUNYUAN LU</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>WEI YUE</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>WANLI MA</s1>
</fA11>
<fA14 i1="01">
<s1>Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park</s1>
<s2>Suzhou, Jiangsu 215123</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Biotechnology, Chemistry, and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 57</s1>
<s2>9000 Aalborg</s2>
<s3>DNK</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>2164-2171</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27255</s2>
<s5>354000506504570100</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>23 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0254904</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Organic electronics : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>A new electron-transporting material 4,7-diphenyl-1,10-phenanthroline-2,9-dicarboxylic acid (DPPA) was synthesized by modifying a n-type small molecule bathocuproine (BCP). The introduced carboxyl groups make DPPA soluble in polar solvent and compatible with large-scale solution-processing techniques. The anchoring of carboxyl on ZnO (or ITO) substrates helps to form a DPPA electron transporting layer, building an improved interfacial contact between the substrate and active layer. Furthermore, the highest occupied molecular orbital level of DPPA shifts to -6.45 eV, which is 0.38 eV deeper than that of BCP, suggesting enhanced hole-blocking. Inverted polymer solar cells using P3HT:PCBM blend as the active layer and DPPA modified ZnO as the electron transporting layer were fabricated. A power conversion efficiency (PCE) of 3.55% was obtained, which is about 10% higher than that of the conventional ZnO buffered devices (3.25%). The DPPA was also used to replace ZnO as the sole electron-extracting layer, resulting in an improved PCE of 3.46%, which indicates that DPPA-ETL/ITO forms a better cathode than conventional ZnO/ITO.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A05T</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A16D</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Cellule solaire organique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Organic solar cells</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Produit nouveau</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>New product</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Producto nuevo</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Diacide carboxylique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Dicarboxylic acid</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Diácido carboxílico</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Echelle grande</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Large scale</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Escala grande</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Méthode en solution</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Growth from solution</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Método en solución</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Procédé fabrication</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Manufacturing process</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Procedimiento fabricación</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Addition étain</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Tin addition</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Adición estaño</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Couche active</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Active layer</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Capa activa</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Orbitale moléculaire</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Molecular orbital</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Orbital molecular</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Méthode MO</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>MO method</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Método orbital molecular</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Conversion énergie</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Energy conversion</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Conversión energética</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Taux conversion</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Conversion rate</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Factor conversión</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Système tampon</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Buffer system</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Sistema amortiguador</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Cathode</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Cathode</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Cátodo</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Phénanthroline</s0>
<s2>NK</s2>
<s5>22</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Phenanthrolines</s0>
<s2>NK</s2>
<s5>22</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Semiconducteur type n</s0>
<s5>23</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>n type semiconductor</s0>
<s5>23</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Semiconductor tipo n</s0>
<s5>23</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Molécule petite</s0>
<s5>24</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Small molecule</s0>
<s5>24</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Molécula pequeña</s0>
<s5>24</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Oxyde de zinc</s0>
<s5>25</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Zinc oxide</s0>
<s5>25</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Zinc óxido</s0>
<s5>25</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>26</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>26</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>26</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Thiophène dérivé polymère</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Thiophene derivative polymer</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Tiofeno derivado polímero</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Acide butyrique</s0>
<s2>NK</s2>
<s5>28</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Butyric acid</s0>
<s2>NK</s2>
<s5>28</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Butírico ácido</s0>
<s2>NK</s2>
<s5>28</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Ester</s0>
<s5>29</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Ester</s0>
<s5>29</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Ester</s0>
<s5>29</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Composé du fullerène</s0>
<s5>30</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Fullerene compounds</s0>
<s5>30</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Couche autoassemblée</s0>
<s5>31</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Self-assembled layer</s0>
<s5>31</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Capa autoensamblada</s0>
<s5>31</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Matériau dopé</s0>
<s5>46</s5>
</fC03>
<fC03 i1="25" i2="3" l="ENG">
<s0>Doped materials</s0>
<s5>46</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>8105T</s0>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>8116D</s0>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>ZnO</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>ITO</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="30" i2="X" l="FRE">
<s0>Bathocuproïne</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="30" i2="X" l="ENG">
<s0>Bathocuproine</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="31" i2="X" l="FRE">
<s0>Couche de transport d'électrons</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC03 i1="31" i2="X" l="ENG">
<s0>Electron transport layer</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Composé II-VI</s0>
<s5>15</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>II-VI compound</s0>
<s5>15</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Compuesto II-VI</s0>
<s5>15</s5>
</fC07>
<fN21>
<s1>245</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001208 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001208 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0254904
   |texte=   A new alcohol-soluble electron-transporting molecule for efficient inverted polymer solar cells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024